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Random Variable

• A random variable is a mathematical formulation of a quantity that 
depends on random events.

• We use upper case letters to represent random variables (e.g., 𝑋𝑋) and 
lower-case to represent constants (e.g., 𝑥𝑥). 

• We can talk about the probability of a random variable 𝑋𝑋 taking a value 
𝑥𝑥: Pr 𝑋𝑋 = 𝑥𝑥 .

• Example:
• If 𝑋𝑋 is a roll of a fair die, then Pr 𝑋𝑋 = 3 = 1/6.

• A full characterization of random variables is beyond the scope of this 
course, and can be a surprisingly deep topic (see “measure theoretic 
probability”).
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Probability Distribution

• A probability distribution (probability measure) gives the 
probability that a random variable takes different values. 

• Technically it gives the probability of events (not necessarily values or 
outcomes), but a formal characterization of “events” is beyond the scope 
of this class.

• We can talk about the “distribution of a random variable.”
• Example:

• Let 𝑝𝑝 be the distribution of a fair die.
• 𝑝𝑝 1 = 𝑝𝑝 2 = 𝑝𝑝 3 = 𝑝𝑝 4 = 𝑝𝑝 5 = 𝑝𝑝 6 = 1

6
• For all such discrete distributions: ∀𝑥𝑥, 𝑝𝑝 𝑥𝑥 ≥ 0 and ∑𝑥𝑥 𝑝𝑝 𝑥𝑥 = 1. 
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Probability Distribution (continued)

• We often say that we have multiple random variables “sampled 
from the same distribution”.

• Here “sampled” is slightly imprecise.
• We really mean that we have multiple random variables, they all 

have the same distribution, and they are all statistically 
independent.

• i.i.d.: Independent and identically distributed.
• Example:

• Let 𝑋𝑋1 and 𝑋𝑋2 be two random variables, each representing a sample of a 
fair die.

• If the two die rolls are independent, what is Pr 𝑋𝑋1 + 𝑋𝑋2 = 7 ?
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Realization or Instance of a Random Variable

• Once a random variable has been sampled, it takes a specific 
value.

• This is called a realization or instance of the random variable.
• A realization of a random variable is a constant.
• Let 𝑥𝑥1 and 𝑥𝑥2 denote the realization of two fair die rolls.
• What is Pr 𝑥𝑥1 = 𝑥𝑥2 ?

• Trick question! There is nothing random here. They are either equal or not, 
and so this probability is either 0 or 1.

• Think of 𝑥𝑥1 and 𝑥𝑥2 as symbols in place of specific numbers.
• What is Pr 3 = 3 ? What is Pr 1 = 2 ?
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Random Data Sets

• In ML, we typically think of data sets as being random samples 
from some distribution, called the data generating distribution.

• Example: The GPA data set contains samples from the distribution of 
students applying to UFRGS.

• We may write (𝑋𝑋,𝑌𝑌) to denote a random variable representing one 
sample from this distribution.

• A data set contains many of these random variables: 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 𝑖𝑖=1
𝑛𝑛 .

• This data set is itself a random quantity!
• We can reason about things like Pr 𝑋𝑋1 = 𝑋𝑋2 , Pr 𝑌𝑌1 = 𝑌𝑌2 𝑋𝑋1 ≠ 𝑋𝑋2 , or 

even the probability of the MSE of the model learned by NN being below a 
constant value!
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Random Data Sets: Example

• Consider a data set containing 𝑛𝑛 = 2 rolls of a fair die.
• 𝑋𝑋1 and 𝑋𝑋2 are random variables representing independent rolls of 

the die:
Pr 𝑋𝑋1 = 1 = Pr 𝑋𝑋1 = 2 = Pr 𝑋𝑋1 = 3 = Pr 𝑋𝑋1 = 4 = Pr 𝑋𝑋1 = 5 = Pr 𝑋𝑋1 = 6 =

1
6

• The data set is 𝑋𝑋1,𝑋𝑋2 .
• What is Pr 𝑋𝑋1 = 𝑋𝑋2 ?
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Non-Random Data Sets
• The data set that we see is one sample of the random variables.
• Once we have the data set as a computer file, it is no longer 

random, and so we write: 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1
𝑛𝑛 .

• In the die example, the data set is (𝑥𝑥1, 𝑥𝑥2).
• Here 𝑥𝑥1 and 𝑥𝑥2 are symbols representing numbers (not random!).
• What is Pr 𝑥𝑥1 = 𝑥𝑥2 ?

• It’s either zero or one! Either they are equal or not. There is nothing random about 
𝑥𝑥1 = 𝑥𝑥2!
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Random vs Non-Random

• Note: Different ML texts take different random/not-random 
perspectives for data sets!

• Texts emphasizing principled theory typically take the random 
perspective.

• Texts emphasizing basic practice typically take the non-random 
perspective.

• When writing pseudocode for an algorithm, should we view the 
data as random or non-random?

• No agreed-upon convention! 
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Random vs Non-Random Terminology

• The terms random and non-random are imprecise.
• People often use random to mean “uniform random.”
• Its precise meaning is “is a random variable.”

• A random variable can always take the same value, effectively being constant!

• Random  Stochastic (avoids confusion with “uniform random”)
• Non-Random  Deterministic or constant (cannot be “random”).
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Probability and Statistics Terminology
• Parameter / Population Statistic: A parameter is a property of a 

probability distribution (or random variable), like the mean or 
variance.

• Example: Mean 𝐄𝐄 𝑋𝑋
• Sample: One or more “draws” of a random variable. 

• 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 might be random variables representing 𝑛𝑛 samples.
• Example: These represent 𝑛𝑛 rolls of the same die
• Often samples 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  are independent and identically distributed (i.i.d.).

• 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 might be the realization of 𝑛𝑛 samples.
• Example: The actual outcomes of 𝑛𝑛 rolls of a die.
• It is not meaningful to discuss whether 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are i.i.d.
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Probability and Statistics Terminology

• Statistic / Sample Statistic: Statistics are properties of a sample. 
To emphasize this, we sometimes say “sample statistic.”

• Example: Sample mean 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖

• Notice that the sample mean is itself a random variable!
• We can also consider a realization of the sample mean: 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖.
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Mean Squared Error (revisited)

• The MSE is:
MSE = 𝐄𝐄 𝑌𝑌 − �𝑌𝑌𝑖𝑖

2 .
• This is a parameter or population statistic.

• The sample MSE is:

�MSE𝑛𝑛 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖
2  or 

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 .

• This is a statistic or sample statistic.
• The “hat” means “an estimate” and the 𝑛𝑛-subscript indicates it is computed 

from 𝑛𝑛 samples.
• Our goal is typically to optimize a parameter.

• We don’t know this parameter’s value.
• In an attempt to achieve this goal, we use sample statistics.

• We can compute sample statistics from data! 13



Can we trust sample statistics?

• How much we should trust sample statistics depends on:
• The number of samples, 𝑛𝑛.

• If the average of 3 die rolls is 4, and the average of 3,000 die rolls is 3.47, which do 
you trust more?

• The variance of the samples.
• Consider the samples (-1, -0.3, 0, 0.5, 0.8) versus (-820, -214, 12, 480, 542)
• Both have sample mean 0. Which are you more confident has a mean in the range 
−10,10 ?

• Idea: Use the number of samples and variance of samples to 
estimate how accurate the sample statistic is.
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Confidence Interval

• We will use the number of samples and their variance to construct a 
confidence interval for the parameter (e.g., MSE) based on the sample 
statistic (sample MSE).

• A confidence interval is an interval (range of numbers) that contains a 
parameter with a specified confidence, 1 − 𝛿𝛿.

• If [𝐿𝐿,𝑈𝑈] is a 1 − 𝛿𝛿 confidence interval for the mean 𝜇𝜇, then
Pr 𝐿𝐿 ≤ 𝜇𝜇 ≤ 𝑈𝑈 ≥ 1 − 𝛿𝛿.

• Question: What is random in this statement of probability?
• Answer: The confidence interval is random! It is typically computed 

from data. Different samples of data result in different lower and upper 
bounds.
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Standard Error
• One common way to obtain a confidence interval is using standard error.
• Let 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 be a sequence of 𝑛𝑛 numbers.
• Let 𝜎𝜎 be the sample standard deviation of this sequence (with Bessel’s 

correction):

𝜎𝜎 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − �̅�𝑥 2

𝑛𝑛 − 1
,

�̅�𝑥 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

 𝑥𝑥𝑖𝑖

• The standard error is then
SE =

𝜎𝜎
𝑛𝑛

.
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Using Standard Error

• If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  are 𝑛𝑛 random variables and:
• The random variables are i.i.d. with mean 𝜇𝜇.
• The random variables are each normally distributed.
• �𝑋𝑋 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  is the sample mean.

• Then �𝑋𝑋 − 1.96 × SE, �𝑋𝑋 + 1.96 × SE  is a 95% confidence interval for 𝜇𝜇. 
• That is:

Pr �𝑋𝑋 − 1.96 × SE ≤ 𝜇𝜇 ≤ �𝑋𝑋 + 1.96 × SE ≥ 0.95.
• Note: There exist other confidence intervals for the mean that don’t 

assume that data is normal (e.g., Maurer & Pontil), and even confidence 
intervals that don’t assume independence (e.g., Azuma) or identically 
distributed samples (e.g., Hoeffding)!

• In general, all confidence intervals make some assumptions, but the 
assumptions differ.

• Confidence intervals with weaker assumptions tend to be “loose” (have wide 
intervals). 17



“The random variables are each normally 
distributed”
• Actually, we only require the sample mean to be normally 

distributed.
• Question: Why is it reasonable to assume the sample mean is 

normally distributed?
• Answer: Central Limit Theorem

• As 𝑛𝑛 → ∞, the sample mean becomes normally distributed regardless of 
the sampling distribution.

• So, when 𝑛𝑛 is “big enough”, this assumption is “reasonable” (still false 
though…)

• What value of 𝑛𝑛 is “big enough” depends on the problem.
• I’ve seen examples where 20 is enough and where hundreds of thousands are not 

enough.
18



Mean Squared Error (re-revisited)

• MSE: MSE = 𝐄𝐄 𝑌𝑌 − �𝑌𝑌𝑖𝑖
2 .

• Sample MSE: �MSE𝑛𝑛 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖

2 .

• Let 𝑍𝑍𝑖𝑖 = 𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖
2

.
• Notice that 𝜇𝜇 = 𝐄𝐄 𝑍𝑍𝑖𝑖 = MSE, and let SE be the standard error of 
𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛.

• So, �MSE𝑛𝑛 ± 1.96 × SE is a 95% confidence interval for the actual 
MSE (under normality assumptions).

• Although normality assumptions often false, this gives a rough idea of 
how much the sample MSE can be trusted.
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Intermission

• Class will resume in 5 minutes.
• Feel free to:

• Stand up and stretch.
• Leave the room.
• Talk to those around you.
• Write a question on a notecard and 

add it to the stack at the front of the 
room.
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End
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